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ABSTRACT

Satellite-to-street view synthesis aims at generating a realistic street-view image
from its corresponding satellite-view image. Although stable diffusion models
have exhibit remarkable performance in a variety of image generation applica-
tions, their reliance on similar-view inputs to control the generated structure or
texture restricts their application to the challenging cross-view synthesis task. In
this work, we propose CrossViewDiff, a cross-view diffusion model for satellite-
to-street view synthesis. To address the challenges posed by the large discrepancy
across views, we design the satellite scene structure estimation and cross-view tex-
ture mapping modules to construct the structural and textural controls for street-
view image synthesis. We further design a cross-view control guided denoising
process that incorporates the above controls via an enhanced cross-view attention
module. To achieve a more comprehensive evaluation of the synthesis results,
we additionally design a GPT-based scoring method as a supplement to standard
evaluation metrics. We also explore the effect of different data sources (e.g., text,
maps, building heights, and multi-temporal satellite imagery) on this task. Results
on three public cross-view datasets show that CrossViewDiff outperforms cur-
rent state-of-the-art on both standard and GPT-based evaluation metrics, generat-
ing high-quality street-view panoramas with more realistic structures and textures
across rural, suburban, and urban scenes. The code and models of this work will
be released at https://opendatalab.github.io/CrossViewDiff/.

1 INTRODUCTION

Satellite images captured by high-altitude sensors differ significantly from daily images taken by
ordinary ground cameras. The overhead perspective of satellite images provides a macroscopic view
that encompasses extensive regional topography, building layouts, and road networks. street-view
images, on the other hand, are captured by mobile phones or vehicle-mounted cameras, providing
a ground-level observation the scene. In this study, we address the task of cross-view synthesis,
especially satellite-to-street view synthesis, which is an important and challenging computer vision
task that has received increasing attention in recent years Shi et al. (2022); Qian et al. (2023); Lu
et al. (2020). Generating realistic street-view images from corresponding satellite images through
cross-view synthesis can benefit various applications, such as cross-view geolocalization Li et al.
(2024a); Toker et al. (2021), urban building attribute recognition Ye et al. (2024b), and 3D scene
reconstruction Li et al. (2024c).

Due to the significant differences in viewpoints and imaging methods, the overlapping information
between different perspectives is very limited Tang et al. (2019); Regmi & Borji (2018); Ye et al.
(2024c;a), as shown in Figure 1 (a). This creates a substantial domain gap between satellite and
street-view images, making the synthesis task highly challenging Lu et al. (2020); Shi et al. (2022).
Consequently, some studies have explored the use of additional ground truth semantic segmenta-
tion maps as auxiliary conditions for models to improve the synthesis results Zhai et al. (2017);
Regmi & Borji (2018); Tang et al. (2019); Wu et al. (2022). However, this essentially generates
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images from semantic maps and does not truly accomplish satellite-to-street cross-modal genera-
tion. Other studies have explored various satellite-to-street projection or transformation methods,
utilizing geometric structure priors derived from satellite images to enhance the layout and structure
of synthesized street-view panoramas Lu et al. (2020); Toker et al. (2021); Shi et al. (2022); Qian
et al. (2023). However, there has been limited exploration of the fidelity and consistency of textures
in cross-modal synthesis between satellite images and street-view panoramas.

Furthermore, existing satellite-to-street view synthesis methods are mostly based on Generative Ad-
versarial Networks (GANs), which often result in poor image quality and unrealistic textures in the
synthesized results, as shown in Figure 1 (b).

Recently, diffusion models have demonstrated superior performance in various content generation
applications, garnering widespread attention Song et al. (2021); Ho et al. (2020); Balaji et al. (2022);
Ramesh et al. (2022); Saharia et al. (2022b). Models like ControlNet enable controllable image
synthesis based on various visual conditions Zhang et al. (2023a); Huang et al. (2023b); Zhao et al.
(2023); Ruiz et al. (2023). For satellite-to-street view synthesis, one potential solution is to treat this
task as a controllable image synthesis task, using satellite images to control the synthesis of street-
view images. However, existing methods utilize similar-view images (e.g., sketches, segmentation
maps) as inputs to control the structure or texture of the generated results. The different modality
domains of satellite and street-view images limit the applicability of these methods in cross-view
synthesis tasks. As shown in Figure 1(b), the domain gap results in synthesized images that are often
realistic yet inconsistent, with significant differences between the synthesized street-view images
and the actual corresponding satellite content.

Figure 1: Illustration of the satellite-to-street view synthesis task. (a) In cross-view scenarios, the
satellite view and street view differ significantly, with limited overlapping information, posing a
serious challenge to the satellite-to-street view synthesis task. (b) Compared with existing methods
using GANs (e.g., Sat2Density Qian et al. (2023)) or diffusion models (e.g., ControlNet Zhang et al.
(2023a)), CrossViewDiff is capable of synthesizing more realistic street-view images with better
perceptual quality and consistency with Ground Truth.

Furthermore, existing cross-view generation studies Lu et al. (2020); Toker et al. (2021); Regmi &
Borji (2018) commonly use image generation metrics such as SSIM Wang et al. (2004) and PSNR
to evaluate the content consistency of synthesized images, as well as FID Heusel et al. (2017) and
KID Bińkowski et al. (2018) to assess image realism. However, these traditional metrics often
fall short in aligning with human perception and lack transparency and interpretability. With the
development of multimodal large models (MLLM) OpenAI (2023); Team et al. (2023); Liu et al.
(2024); Li et al. (2023b), an increasing number of studies have employed multimodal large models
like GPT-4o OpenAI (2023) for assessing the quality of synthesized images Cho et al. (2023); Huang
et al. (2023a); Wu et al. (2024); Zhang et al. (2023b), achieving interpretable and highly human-
aligned scoring Ku et al. (2023); Peng et al. (2024). However, prior use of multimodal scoring
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has predominantly been in text-to-image synthesis or editing tasks, with no studies applying it to
cross-view synthesis tasks.

In this work, we propose CrossViewDiff, a cross-view diffusion model for satellite-to-street view
synthesis. Based on the geometric and imaging relationships between satellite and street views, we
construct structural and texture controls from satellite images and have designed a cross-view con-
trol guided denoising process to enhance the structural and texture fidelity of synthesized panoramic
images. Additionally, we extend the traditional satellite-to-street view synthesis task by exploring
different data sources, such as text, map data, building height data and multiple-temporal satellite
images. In our experiments, we additionally utilize GPT-4o OpenAI (2023) to score synthesized
street-view images as a supplement to standard metrics, aiming for a more comprehensive evalua-
tion of the generated results. Experimental results demonstrate that CrossViewDiff excels on three
public cross-view datasets, generating realistic and content-consistent images, showcasing outstand-
ing synthesis quality.

The main contributions of this work are summarized as follows:

• We design satellite scene structure estimation and cross-view texture mapping modules
to overcome the significant discrepancy between satellite and street views, constructing
structure and texture controls for street-view image synthesis.

• We propose a novel cross-view control guided denoising process that incorporates the struc-
ture and texture controls via an enhanced cross-view attention module to achieve more
realistic street-view panorama synthesis.

• We conduct extensive experiments in street-view image synthesis across a variety of scenes
(rural, suburban, and urban), explore additional data sources (e.g. text, maps, multi-
temporal images, etc.), and design a GPT-based evaluation metric as a supplement to stan-
dard metrics.

• CrossViewDiff outperforms state-of-the-art methods on three public cross-view datasets,
achieving an average increase of 9.0% in SSIM, 39.0% in FID, and 35.5% in the GPT-
based score.

2 RELATED WORK

2.1 SATELLITE-TO-STREET VIEW SYNTHESIS

Satellite-to-street view synthesis is a challenging task that has been extensively studied. To mitigate
the difficulties posed by the large differences across views, many studies explored additional seman-
tic priors to enhance the structure of street-view synthesis results Zhai et al. (2017); Regmi & Borji
(2018); Tang et al. (2019); Wu et al. (2022). Zhai et al. Zhai et al. (2017) is a pioneer in this domain
that infers the street-view semantic map from the satellite semantic map via a learnable linear trans-
formation. Tang et al. Tang et al. (2019) utilized both the satellite image and the semantic map of
street-view image as input to synthesize the target street-view image via image-to-image translation.
Although providing a strong structure prior of street-view images, the semantic map is not always
available in the actual cross-view synthesis scenarios.

Another group of studies proposed satellite-to-street synthesis methods without using additional
semantic information of street-view images, which explored various cross-view projection or trans-
formation methods to provide geometry guidance specifically for panoramic image synthesis Lu
et al. (2020); Toker et al. (2021); Shi et al. (2022); Qian et al. (2023). In Lu et al. Lu et al. (2020),
a geo-transformation method was proposed for leveraging the height map of satellite view to pro-
duce the additional building geometry condition to facilitate street-view panorama synthesis. Toker
et al. Toker et al. (2021) applied a polar transformation method proposed by Shi et al. (2019) to
cross-view image synthesis and designed a multi-tasks framework in which image synthesis and re-
trieval are considered jointly. Shi et al. Shi et al. (2022) employed a learnable geographic projection
module to learn the geometry relation between the satellite and ground views to facilitate street-
view panorama synthesis. Inspired by the success of neural radiance field (NeRF) Mildenhall et al.
(2020), Qian et al. Qian et al. (2023) proposed a Sat2Density that can learn a faithful 3D density
field as the geometry guidance for panorama synthesis.
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In summary, existing studies on satellite-to-street view synthesis are based on generative adversarial
networks, with the main aim of improving the structure of synthetic image via semantic or geometric
guidance, generating street-view images with low quality and unrealistic textures. By contrast, our
study proposes a novel cross-view synthesis method based on Stable Diffusion models Rombach
et al. (2022), which designs a cross-view control guided denoising process with a novel cross-view
attention module as well as structure and texture controls, generating street-view panoramas with
much better perceptual quality and more realistic textures across various scenes.

2.2 DIFFUSION MODELS

In recent computer vision studies, diffusion models Ho et al. (2020) have exhibited remarkable
performance in many content creation applications, such as image-to-image translation Saharia et al.
(2022a); Li et al. (2023a), text-to-image generation Balaji et al. (2022); Ramesh et al. (2022); Saharia
et al. (2022b); Zhang et al. (2024), image enhancement Saharia et al. (2022c); Whang et al. (2022);
Gao et al. (2023); Wang et al. (2024), content editing Avrahami et al. (2022); Couairon et al. (2023),
and 3D shape generation Luo & Hu (2021); Zeng et al. (2022); Liang et al. (2024); Li et al. (2024b),
etc. For traditional denoising diffusion models, images are generated by progressively denoising
from random Gaussian noise. For instance, Song et al. Song et al. (2021) proposed denoising
diffusion implicit models (DDIM) that reduce the number of denoising steps using an alternative
non-Markovian formulation. In latent diffusion models (LDM) Rombach et al. (2022), a variational
autoencoder Kingma & Welling (2014) is trained for compressing natural images to a latent space,
where the diffusion process will be performed in later stages.

Recently, an increasing number of diffusion models have been proposed for controllable image
synthesis Gal et al. (2022); Zhang et al. (2023a); Huang et al. (2023b); Zhao et al. (2023); Ruiz et al.
(2023). ControlNet Zhang et al. (2023a) leverages both text and a variety of visual conditions (e.g.,
sketch, depth map, and human pose) to generate impressive controllable images, which also avoids
the need to re-train the entire large model by fine-tuning pre-trained diffusion models and zero-
initialized convolution layers. Composer Huang et al. (2023b) integrates global text description
with various local controls to train the model from scratch on datasets with billions of samples. Uni-
ControlNet Zhao et al. (2023) enables composable control with various conditions using a single
model and achieves zero-shot learning on previously unseen tasks. However, these methods utilize
similar-view image inputs to control the structure and texture of the synthesis results, resulting in
inapplicability to cross-view synthesis tasks.

In addition, several studies have proposed diffusion models for novel view synthesis tasks. For
instance, MVDiffusion Tang et al. (2023) proposes a cross-view attention module to generate con-
sistent indoor panoramic images, and Tseng et al. Tseng et al. (2023) utilizes epipolar geometry as
a constraint prior to synthesize a consistent video of novel views from a single image. MagicDrive
Gao et al. (2024) proposes a street view generation framework that leverages diverse 3D geometry
controls (i.e., camera poses, road maps, and 3D bounding boxes) and textual descriptions. However,
existing novel view synthesis methods rely on the continuity of image views or camera pose infor-
mation, which cannot be satisfied in satellite-to-street cross-view settings. Several recent studies
have aimed at cross-view synthesis task via diffusion models. Sat2Scene Li et al. (2024c) proposes
a novel 3D reconstruction architecture that leverages diffusion models on sparse 3D representations
to directly generate 3D urban scenes from satellite imagery. Streetscapes Deng et al. (2024) pro-
poses an autoregressive video diffusion framework and introduces a novel temporal interpolation
approach, generating long-range consistent street-view images based on map and height data. How-
ever, the task settings of these studies are different from the satellite-to-street view synthesis, and
their methods fail to utilize satellite image information to generate realistic street-view textures.

Although diffusion models have achieved promising performance in numerous computer vision ap-
plications, few studies have been designed for the challenging satellite-to-street view synthesis task.
In this work, we extend the application scenarios of diffusion models to satellite-to-street view syn-
thesis. With both structure and texture controls from the satellite image, our cross-view guided
denoising process enables the diffusion model to generate more realistic street-view panoramas.
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Figure 2: Overview of our proposed CrossViewDiff. First, we create 3D voxels based on a depth es-
timation method as intermediaries of information across different viewpoints. Subsequently, based
on the satellite images and 3D voxels, we establish structural and textural controls for street view
synthesis via satellite scene structure estimation and cross-view texture mapping, respectively. Fi-
nally, we integrate the above cross-view control information via an enhanced cross-view attention
mechanism, guiding the denoising process to synthesize street-view images.

3 METHODS

The goal of satellite-to-street view synthesis is to generate realistic and consistent street-view
panoramas from corresponding satellite images. As shown in Figure 2, this paper introduces a
novel cross-view synthesis method named CrossViewDiff. In our workflow, we first construct struc-
ture and texture controls from satellite images based on the geometric and imaging relationships
between satellite and street views. Subsequently, we design a cross-view control guided denoising
process via an enhanced cross-view attention module, achieving the synthesis of realistic street-view
images.

In the following sections, we first provide a brief introduction to the diffusion model in Section 3.1.
In Section 3.2, we discuss the structure and texture controls for cross-view synthesis. In Section 3.3,
we describe the cross-view control guided denoising process. In Section 3.4, we detail our strategy
for effectively using the GPT model to evaluate the quality of synthesized street-view images.

3.1 PRELIMINARY

Diffusion models are generative models that can generate samples from a Gaussian distribution
to match target data distribution by a gradual denoising process Ho et al. (2020). In the forward
process, diffusion models gradually add Gaussian noises to a ground truth image x0 according to a
predetermined schedule β1, β2, . . . , βT :

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where xt is a noised sample with noise level t. The reverse process involves a series of denoising
steps, where noise is progressively removed by employing a neural network ϵϕ with parameters ϕ.
This neural network predicts the noise ϵ present in a noisy image xt at step t. The simplified version
of the loss function for training the diffusion model is formulated as follows:

Lsimple(ϕ, x) = Et,ϵ

[
∥ϵϕ(xt, t)− ϵ∥2

]
(2)

where t is uniformly sampled from the set {1, . . . , T}, and xt−1 can be reconstructed from xt by
removing the predicted noise:
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xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵϕ(xt, t)

)
+

√
βtϵ (3)

where αt = 1− βt, ᾱt is the cumulative sum of αt and ϵ ∼ N (0, I).

3.2 STRUCTURE AND TEXTURE CONTROLS FOR CROSS-VIEW SYNTHESIS

To precisely control the generation of panoramas in cross-view scenarios, it is essential to establish
structural and textural information from a street-view perspective based on satellite imagery. Specif-
ically, we start by constructing three-dimensional voxels as intermediaries from the depth estimation
results of satellite images. The structural control information is derived from projecting these 3D
voxels onto the street-view panorama to obtain scene structure estimates. On the other hand, texture
control is achieved through a weight matrix derived from the cross-view mapping relationship based
on 3D voxels, representing the response regions on the street view image to different features of the
satellite image.

3.2.1 SATELLITE SCENE ESTIMATION FOR STRUCTURE CONTROL

Considering the substantial differences in viewing angles between satellite and street-view modal-
ities, directly extracting contour information from satellite images is challenging. Therefore, we
first utilize depth estimation methods to obtain depth results from the satellite perspective Fu et al.
(2018); Chen et al. (2019); Yang et al. (2024); Ke et al. (2024). Following this, we convert these
depth results into a 3D voxel grid, which serves as an intermediary for scene structure reconstruction.
Finally, leveraging the equiangular projection characteristics of street-view panoramas, we establish
a mapping from the 3D voxels to the central street view Lu et al. (2020), resulting in a binary map
that represents structural information, as shown in Figure 2. This structural information, which in-
cludes the positional distribution of significant features (such as buildings, trees, roads, etc.), will
further be used as structural control in our diffusion model.

3.2.2 CROSS-VIEW MAPPING FOR TEXTURE CONTROL

Previous methods typically utilize the global texture information of satellite images for panorama
synthesis. In contrast, we propose Cross-View Texture Mapping (CVTM), which achieves localized
texture control by computing the mapping relationship between each coordinate of the panorama
and the satellite image. Based on the 3D voxel grid, we calculate the elevation θ and azimuth ϕ
angles from the panoramic image coordinates. For a pixel at (xpano, ypano) in the panoramic image,
the angles are determined as follows:

θ =
π

2
−

ypano · π
Ĥpano

(4)

ϕ =
xpano · 2π
Ŵpano

− π (5)

Here Ĥpano and Ŵpano denote the height and width of a panoramic image. The calculated angles,
θ and ϕ, fall within the range [−π

2 ,
π
2 ] and [−π, π], respectively. According to the two calculated

angles, we can determine a ray starting from the center coordinate (xcen, ycen) of the 3D voxel map.
The length of the ray R is the distance from its first intersection with the 3D voxel grid to the center
coordinate. Based on the above information, the final mapping coordinates in the satellite image are
calculated as follows:

xsate = xcen +R · cos(θ) · cos(ϕ) (6)
ysate = ycen −R · cos(θ) · sin(ϕ) (7)

Consequently, we establish the pixel-wise mapping relation between each panoramic coordinate
(xpano, ypano) and its corresponding satellite-view coordinate (xsate, ysate).
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In addition, considering the intrinsic errors in cross-view alignment and other factors in complex
real-world environment, it is not enough to rely on one-to-one mapping to supplement texture in-
formation (the green arrow in Fig 2). The pixels around the mapped points in the satellite images
are also valuable texture references that we need to exploit. Consequently, we further design an
enhanced satellite texture mapping strategy that leverages the surroundings of the mapped points in
the satellite image to enhance the texture details in the street-view image (the orange arrows in Fig
2). This technique utilizes an adaptive re-weighting mechanism based on the distance between the
mapped point and other pixels in the satellite image. The values in the weight matrix are calculated
as follows:

Mj = 1− sigmoid (β (∥p∗ − pj∥2)) (8)

In this formula, p∗ indicates the coordinate (xsate, ysate) in the satellite image that is mapped from the
street-view image according to formula (4)-(7). The pj represents each pixel position in the satellite
image, where j is an index ranging in j ∈ [1, N ], and N is the number of pixels in the satellite image.
The term ∥·∥2 is the Euclidean distance. The parameter β controls the rate of change in the sigmoid
function. The weight value Mj indicates the importance of pj to the mapped point p∗, which will
be higher if pj is close to p∗, thus enhancing the overall realism and coherence of the street-view
images. Consequently, we have obtained the weight matrix M , which reflects the texture mapping
relationship between satellite and street-view images.

3.3 CROSS-VIEW CONTROL GUIDED DENOISING PROCESS

Based on satellite scene estimation, we obtain binary maps to serve as structural controls for the
street-view images. Utilizing cross-view mapping, we derive weight matrices to act as texture con-
trols for the street-view images. Based on the characteristics of the structural and textural control
information, we design an enhanced cross-view attention module to integrate both types of informa-
tion, guiding the subsequent denoising process.

In our enhanced cross-view attention module, let Q ∈ Rhp×wp denote the Query feature from the
panoramic binary map Spano, K ∈ Rhs×ws denote the Key feature from the input satellite image
Isate, and V ∈ Rhs×ws denote the Value feature, which contain detailed texture information from
the satellite image. Here, hp×wp and hs×ws represent the resolution of the panorama and satellite
feature map, respectively. Moreover, Esate and Epano denote the satellite and panoramic encoders.
Wq , Wk and Wv are projection matrices. The definitions of Q,K, V are as follows:

Q = Wq(Epano(Spano)), K = Wk(Esate(Isate)), V = Wv(Esate(Isate)), (9)

The process begins with the computation of an affinity matrix A ∈ Rhpwp×hsws , reflecting the in-
teraction between Q and K. Following this, the weight matrix derived from the previous module
is down-sampled to M ∈ Rhpwp×hsws and applied to each pixel within the satellite image to em-
phasize relevant features. This selective enhancement is crucial for the subsequent fusion of the
detailed texture information from the satellite image into the panoramic feature Fpano ∈ Rhp×wp .
The enhanced cross-view attention mechanism is formulated as follows:

z = softmax(A⊙M) · V (10)
In these expressions, ⊙ denotes element-wise multiplication, where the weight matrix M is applied
to the affinity matrix (A) to obtain the reweighted affinity matrix (A′), emphasizing the connection
between the most relevant pixels.

The output z, generated at each step, is ingeniously reincorporated into the network as a pivotal con-
ditional element. By employing z as a dynamic conditional catalyst within our cross-view diffusion
architecture, we ensure that each step of the denoising process is informed by the evolving latent
representation, thereby enabling a controlled and gradual transition from zt to z0. This process is
meticulously orchestrated by a cross-view control guided denoising process, which integrates struc-
tural and textural knowledge extracted from Isate into the refinement of the final latent feature z,
subsequently decoded through Stable Diffusion’s latent space decoder D to achieve the generated
street-view panorama Ipano.
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Figure 3: The overall process for automated evaluation using GPT-4o. Instructions are meta-prompts
that include a task description, scoring criteria, scoring range, and scoring examples. Then we use a
GPT-4o as Evaluator A to provide initial scores and reasons based on the input prompts and image
samples. Finally, the scores are combined with the image samples for a secondary evaluation by
another GPT-4o as Inspector B, who assesses the score’s appropriateness and determines the final
score.

3.4 GPT-BASED EVALUATION METHOD FOR CROSS-VIEW SYNTHESIS

Cross-modal satellite-to-ground synthesis requires measuring both the consistency and realism of
generated images. Traditional metrics like SSIM Wang et al. (2004) and FID Heusel et al. (2017)
generally focus on single dimensions of similarity or realism, providing incomplete evaluations.
Inspired by the use of large multimodal models for synthetic image scoring Cho et al. (2023); Huang
et al. (2023a); Wu et al. (2024); Zhang et al. (2023b), we design a new evaluation process based on
GPT-4o, as shown in Figure 3. This approach enables comprehensive and interpretable assessments
of synthesized street-view images, aligning more closely with human judgment standards.

Firstly, we design three key evaluation dimensions for cross-view synthesized images: Consistency,
Visual and Structural Realism, and Perceptual Quality. We adopted a rating scheme, establishing a
5-level rating system with scores ranging from 1 (poor) to 5 (excellent).

Consistency: This dimension evaluates the alignment of the content in synthesized images with
real street-view images, including the structure and texture of buildings, the layout of roads, and
the similarity of other significant landmarks, measuring the content consistency of the synthesized
street-view images.

Visual Realism: This evaluates the visual effect and structural reasonableness of the generated
images, including the realism of color, shape, and texture, as well as the the structural integrity,
assessing whether they look like real street-view images.

Perceptual Quality: This evaluates the overall perceptual quality of the generated images, including
aspects such as image clarity, noise level, and visual comfort, measuring the quality of the generated
images.

To achieve more effective GPT scoring, we employed Chain-of-Thought (CoT) and In-Context
Learning (ICL) strategies Alayrac et al. (2022); Zhang et al. (2023c); Brown et al. (2020); Peng
et al. (2024) to enhance its stability and effectiveness. Firstly, we provided GPT-4o with a small
number of effective human-scored examples from multiple users, enabling the model to effectively
learn human scoring patterns. Secondly, by enabling the large model to explain the reasoning behind
its scores, we have introduced an element of internal reflection to the evaluation process. Addition-
ally, we used GPT-4o to act as Evaluator A and Inspector B. After receiving the initial scores and
reasons from Evaluator A, Inspector B will assess the reasonableness of these scores and make the fi-
nal scoring decision. If the scores are deemed reasonable, they will be retained; otherwise, Inspector
B will provide new scoring results and justifications.

To validate the effectiveness of GPT-based scoring, we invited ten human users to perform the same
scoring task and measured the consistency between their scores and those generated by GPT. We
provided thorough training to the users to ensure they fully understood the satellite-to-street view
generation task. The users’ scoring tasks and schemes were aligned with the GPT scoring. We
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ensured that each generated image was scored by at least two human users. Due to the large volume
of cross-view datasets and the cost of both user and GPT scoring, we randomly sampled 1000 images
from the evaluation sets of each dataset for assessment. In addition to our method, we selected the
best comparative results from GAN and diffusion methods for evaluation. A total of 9000 images
were used for user scoring, and we measured the agreement between these scores and the GPT
scores.

4 EXPERIMENTS

In this section, we first introduce the three datasets used in this study and the experimental setting.
Next, we conduct both qualitative and quantitative comparisons of CrossViewDiff with state-of-
the-art cross-view synthesis methods. Following this, we perform ablation studies to evaluate the
effectiveness of each module. Additionally, we explore street-view synthesis tasks using additional
data sources. Finally, we discuss the limitations of our method.

4.1 DATASET

In our experiments, we used three popular cross-view datasets to evaluate the synthesis results, i.e.,
CVUSA Zhai et al. (2017), CVACT Liu & Li (2019) and OmniCity Li et al. (2023c). These three
datasets encompass rural, suburban, and urban scenes, providing a robust benchmark for compre-
hensively evaluating the performance of satellite-to-street view synthesis. Furthermore, in addition
to the original satellite imagery and building height data provided by OmniCity, we supplemented
multimodal data including text, maps, and multi-temporal satellite imagery, providing data support
for street-view synthesis tasks using additional multimodal data sources.

CVUSA Zhai et al. (2017) is a standard large-scale cross-view benchmark, primarily featuring rural
scenes such as roads, grasslands, and forests. This dataset comprises centrally aligned satellite and
street-view images collected from various locations across the United States, which is randomly
split into training and test sets in an 8:2 ratio.

CVACT Liu & Li (2019) is a widely used cross-view dataset that includes satellite and street-view
images from Canberra, Australia. This dataset mainly consists of suburban scenes with relatively
low buildings and open views. Unlike CVUSA dataset, the training and test sets of CVACT dataset
are divided by region.

OmniCity Li et al. (2023c) is an urban cross-view dataset that includes street-view and satellite
images from New York, USA. The primary scenes in OmniCity consist of dense urban buildings,
and street-view images that are heavily obstructed by trees or vehicles will be filtered out. OmniCity
is divided into training and test data by region.

Additionally, the orientation towards the north in both street view and satellite imagery is a critical
attribute for cross-view datasets. In all three datasets, the north direction in satellite images is at the
top of the image. In CVUSA Zhai et al. (2017) and CVACT Liu & Li (2019), the north direction
in street-view images is in the center column, while in OmniCity Li et al. (2023c), it is in the first
column.

4.2 EXPERIMENTAL SETTING

We implement CrossViewDiff based on the ControlNet Zhang et al. (2023a) framework, incorpo-
rating the pre-trained Stable Diffusion Rombach et al. (2022) v1.5 model. The diffusion decoder
is configured in an unlocked state and the classifier-free guidance Ho & Salimans (2022) scale is
established at 9.0. For the final inference sampling, we adopt T = 50 as the sampling step, consis-
tent with the DDIM Song et al. (2021) strategy. The entire training process is performed on eight
NVIDIA A100 GPUs, with a batch size of 128, spanning a total of 100 epochs. Our depth estima-
tion method employs Marigold Ke et al. (2024) and is fine-tuned on the OmniCity dataset, which
provides elevation information. We conduct our experiments at a resolution of 1024 × 256 on the
CVUSA Zhai et al. (2017) and 1024 × 512 on OmniCity Li et al. (2023c) and CVACT Liu & Li
(2019).
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We compared our method with several state-of-the-art cross-view synthesis methods on the three
datasets, including GAN-based methods such as Sate2Ground Lu et al. (2020), CDTE Toker et al.
(2021), S2SP Shi et al. (2022), and Sat2Density Qian et al. (2023), as well as diffusion models
for image transformation control like ControlNet Zhang et al. (2023a) and Instruct pix2pix (Instr-
p2p) Brooks et al. (2023). For Sat2Density Qian et al. (2023), we follow their original setup, i.e.,
the lighting hints are determined based on the average values of the sky histograms obtained from
random selections. For diffusion-based methods (ControlNet and instr-p2p), we use a pre-trained
model consistent with that of CrossViewDiff and maintain the same sample steps. Note that all
comparison methods are conducted according to their optimal experimental settings.

Following previous studies Lu et al. (2020); Toker et al. (2021); Regmi & Borji (2018), we used
common metrics such as SSIM Wang et al. (2004), SD, and PSNR to evaluate the content consis-
tency of synthesized images, and FID Heusel et al. (2017) and KID Bińkowski et al. (2018) to assess
image realism. Furthermore, in Section 4.3.2, we use GPT-4o to evaluate the synthesized street view
images across three dimensions: consistency, visual realism, and perceptual quality.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

4.3.1 QUANTITATIVE AND QUALITATIVE EVALUATION

Table 1: Quantitative comparison of different methods on CVUSA Li et al. (2023c) and CVACT Liu
& Li (2019) datasets in terms of various evaluation metrics.

Method CVUSA CVACT

SSIM (↑) SD (↑) PSNR (↑) FID (↓) KID (↓) SSIM (↑) SD (↑) PSNR (↑) FID (↓) KID (↓)

Sate2Ground Lu et al. (2020) 0.294 15.48 12.634 52.42 0.036 0.392 15.09 13.038 55.61 0.079
CDTE Toker et al. (2021) 0.283 15.24 13.815 28.35 0.028 0.370 15.52 13.707 57.00 0.064
S2SP Shi et al. (2022) 0.319 15.73 13.689 27.31 0.021 0.368 15.86 13.974 65.38 0.064
Sat2Density Qian et al. (2023) 0.339 15.73 14.229 41.43 0.036 0.387 16.09 14.271 47.09 0.038
ControlNet Zhang et al. (2023a) 0.277 15.22 11.182 44.63 0.044 0.340 15.36 12.150 47.15 0.019
Instruct pix2pix Brooks et al. (2023) 0.255 15.76 10.664 68.75 0.077 0.392 15.64 13.123 57.74 0.049

Ours 0.371 16.31 12.000 23.67 0.018 0.412 16.29 12.411 41.94 0.041

Table 2: Quantitative comparison of different methods on OmniCity Li et al. (2023c) dataset in
terms of various evaluation metrics.

Method OmniCity

SSIM (↑) SD (↑) PSNR (↑) FID (↓) KID (↓)

Sate2Ground Lu et al. (2020) 0.290 14.38 12.430 75.22 0.053
CDTE Toker et al. (2021) 0.294 14.47 11.594 122.29 0.141
S2SP Shi et al. (2022) 0.294 14.61 12.748 84.00 0.088
Sat2Density Qian et al. (2023) 0.316 14.73 13.661 87.90 0.072
ControlNet Zhang et al. (2023a) 0.297 14.64 10.703 59.99 0.056
Instruct pix2pix Brooks et al. (2023) 0.291 14.03 10.363 64.89 0.087

Ours 0.353 15.17 11.127 42.01 0.033

We provide the quantitative results on the rural CVUSA and suburban CVACT datasets in Table
1. Compared to the state-of-the-art method for cross-view synthesis (Sat2Density), our method
achieved significant improvements in SSIM Wang et al. (2004) and FID Heusel et al. (2017) scores
by 9.44% and 42.87% on CVUSA, respectively. Similarly, enhancements of 6.46% and 10.94%
in SSIM and FID were observed on CVACT. Visual results from Figure 4 suggest that GAN-based
cross-view methods tend to produce excessive artifacts and blurriness. While diffusion-based ap-
proaches like ControlNet Zhang et al. (2023a) and Instr-p2p Brooks et al. (2023) can generate
highly realistic street views, they often lack content relevancy with the Ground Truth. In contrast,
our method benefits from structure and texture controls, effectively capturing satellite-view informa-
tion to generate realistic images that are more consistent with the Ground Truth street-view images,
including buildings, trees, green spaces, and roads.

In the urban OmniCity dataset, our CrossViewDiff also demonstrates excellent performance com-
pared to the most advanced methods, as shown in Table 2. Compared with the state-of-the-art
(Sat2Density Qian et al. (2023)), our approach achieves significant improvements in SSIM Wang
et al. (2004) and FID Heusel et al. (2017) by 11.71% and 52.22%, respectively. The visual results
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Figure 4: Qualitative comparison of synthesis results on CVUSA Zhai et al. (2017), CVACT Liu
& Li (2019) and OmniCity Li et al. (2023c), respectively. The comparison includes the synthesis
results of Sat2Density Qian et al. (2023), ControlNet Zhang et al. (2023a), Instr-p2p Brooks et al.
(2023), and our method. The results indicate that our method generates street views that are more
realistic, consistent, and of higher quality compared to other methods.

from the last three rows of Figure 4 demonstrate that our method effectively maintains good per-
formance in synthesized street view images of urban scenes, such as more realistic and consistent
building contours and colors. Extensive experimental results demonstrate that our CrossViewDiff
outperforms existing methods and achieves excellent results for street-view image synthesis across
various scenes, including rural, suburban and urban environments.

4.3.2 GPT-BASED EVALUATION

Beyond conventional similarity and realism metrics, we also leverage the powerful visual-linguistic
capabilities of existing MLLM large models to design a GPT-based scoring method for evaluating
synthetic images. As shown in Figure 5, GPT can provide scores across multiple dimensions along
with the corresponding reasons for the scores. The description of the scoring reasons by GPT en-
hances the interpretability of the metric scores. As described in section 3.4, a subset of the dataset
(9K pairs of images) was evaluated by both human users and GPT. By calculating the similarity
between each user rating and the GPT score, the results, as shown in Table 3, demonstrate that GPT-
based scoring performs well in aligning with human ratings across multiple metrics, with an average
similarity exceeding 80%. This highlights the fact that GPT-based scoring is very close to human
preferences and can effectively evaluate synthetic street-view images.

Moreover, as illustrated in Table 4 and Figure 6, our method significantly outperforms other GAN-
based and diffusion-based generation methods in the three evaluation dimensions of Consistency,
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Visual Realism, and Perceptual Quality. This also indicates that the street-view images synthesized
by our method are more aligned with the requirement of human users, which aids in subsequent
applications such as immersive scenes and virtual reality tasks.

Figure 5: An example of GPT-based evaluation. Given a synthesized street-view image and the
corresponding Ground Truth, GPT-based evaluation can provide scores across multiple dimensions
and the corresponding reasons for the scores.

Table 3: Average similarity between human user
ratings and GPT ratings.

Evaluation Metrics Average Similarity

Consistency 0.810
Visual Realism 0.816
Perceptual Quality 0.743
Total Score 0.801

Figure 6: GPT-based evaluation results.

Table 4: Evaluation results of street view synthesis based on GPT-4o. The scores range from 1
(poor) to 5 (excellent), presenting the average score across three datasets. Our method significantly
outperforms other methods in terms of the three evaluation dimensions and the total score.

Method Consistency Visual Realism Perceptual Quality Total Score

Sat2Density Qian et al. (2023) 2.07 2.05 1.74 7.91
Instruct pix2pix Brooks et al. (2023) 1.67 2.75 2.61 9.79
Ours 2.32 3.66 3.66 13.27

4.3.3 PANORAMA CONTINUITY EVALUATION

For street-view panorama synthesis, another important evaluation factor is the continuity between
the left and right sides of the image. As illustrated in the qualitative results in Figure 7, both GAN-
based and diffusion-based methods produce synthesis results with apparent boundary lines, as they
treat panorama synthesis as a general image synthesis task. In contrast, our method constructs
structural controls from a continuous scene composed of 3D voxels projected onto panoramic street
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views, allowing seamless integration at the left and right boundaries. For texture controls, the tex-
ture mapping features at the left and right positions of the street views are derived from proximate
and continuous positions on the satellite image. Owing to these continuous structural and textural
constraints, our method produces panoramic images with excellent 360° coherence.

Figure 7: Qualitative results of the panorama continuity evaluation on CVUSA Zhai et al. (2017)
and Omnicity Li et al. (2023c), respectively. By stitching the right 90° of the synthesis panorama
to the left side of the image, our method demonstrates excellent consistency in texture and structure
compared to other methods.

4.4 ABLATION STUDY

In our ablation study, we first assessed the effectiveness of our structure and texture control modules.
As shown in the first two rows of each dataset of Table 5, using structural information derived
from satellites as input proved effective, achieving improvements across multiple metrics such as
SSIM Wang et al. (2004), FID Heusel et al. (2017), and KID Bińkowski et al. (2018). The last two
rows of each dataset show the results of using direct Cross-Attention to incorporate global textures
(w/o CVTM) and our Cross-View Texture Mapping (w/ CVTM) methods. Compared to the direct
incorporation global textures, the approach guided by cross-view mapping relationships effectively
assigns local textures from corresponding satellite regions to the appropriate locations in street-view
images. Figure 8 presents qualitative ablation results on CVUSA Zhai et al. (2017) and OmniCity
Li et al. (2023c), where structural control contributes to consistent content distribution, and texture
control enhances the consistency of generated textures in buildings and forests.

Table 5: Quantitative ablation for different types of controls on CVUSA Zhai et al. (2017) and
OmniCity Li et al. (2023c), including Structure, Texture (w/o CVTM), and Texture (w/ CVTM).

Datasets Structure Texture (w/o CVTM) Texture (w/ CVTM) SSIM (↑) SD (↑) PSNR (↑) FID (↓) KID (↓)

CVUSA

0.277 15.22 11.182 44.63 0.044
✓ 0.312 15.30 10.358 41.19 0.039
✓ ✓ 0.283 15.65 10.913 33.51 0.020
✓ ✓ 0.371 16.31 12.000 23.67 0.018

OmniCity

0.297 14.64 10.703 59.99 0.056
✓ 0.309 14.54 11.417 43.06 0.042
✓ ✓ 0.345 14.73 10.899 64.33 0.059
✓ ✓ 0.353 15.17 11.127 42.01 0.033

Additionally, as the intermediaries for constructing both structural and textural controls, the 3D
voxels derived from satellite depth estimation results significantly impact the accuracy of cross-view
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Figure 8: Qualitative ablation results on CVUSA Zhai et al. (2017) and OmniCity Li et al. (2023c).
In the synthesis results, the first column represents the baseline without any structure or texture con-
trols, the second column represents using only structure constraints, and the third column represents
using both structure and texture (w/ CVTM) controls.

Table 6: Ablation results for varying depth estimations on CVUSA Zhai et al. (2017) and OmniCity
Li et al. (2023c) datasets. The impact of adjusted depth results on experimental metrics is minimal.

Method OmniCity CVUSA

SSIM (↑) SD (↑) PSNR (↑) FID (↓) KID (↓) SSIM (↑) SD (↑) PSNR (↑) FID (↓) KID (↓)

Ours (× 0.9) 0.350 15.10 11.111 43.58 0.034 0.365 16.30 11.943 24.11 0.019
Ours (× 1.1) 0.349 15.11 11.104 44.76 0.037 0.368 16.29 11.950 23.13 0.019
Ours 0.353 15.17 11.127 42.01 0.033 0.371 16.31 12.000 23.67 0.018
∆ 0.004 0.07 0.023 2.75 0.004 0.006 0.02 0.057 0.98 0.001

controls. Therefore, the precision of satellite depth estimation directly influences the effectiveness
of these controls. To simulate depth estimation inaccuracies, we apply scaling factors (0.9 and 1.1)
to the depth estimation results before generating street-view images, as detailed in Table 6. The
experimental results indicate that while our method relies on depth estimation, the stability of the
model’s output remains high, with minimal fluctuation in performance metrics.

4.5 EXPERIMENTAL RESULTS USING ADDITIONAL DATA SOURCES

In this section, we provide more experimental results of real-wolrd application scenarios using ad-
ditional data sources. In addition to the satellite images, other inputs such as textual data, building
height data, and public map data (e.g. OpenStreetMap1) can also be used for generating street-view
images. In this study, we explored the synthesis of street-view images using multiple data sources on
the OmniCity Li et al. (2023c) dataset and analyzed their impacts. Based on OmniCity street-view
images, we generate corresponding text prompts of street-views images using the CLIP Radford
et al. (2021) model, and supplement the corresponding historical satellite imagery and OSM map
data based on the street view capture locations.

As shown in Figure 9, textual data can provide some global information about the scene , but its
lack of detail and specificity results in visually unrealistic images. OSM (OpenStreetMap) data
offers semantic features of different areas, such as roads, buildings, and parks. These semantic
features aid in generating street-view images with consistent semantic content. However, when
using only OSM data, the structure and texture of the synthesized street view images still show a
certain gap compared to real images. Building height data provides the outlines of buildings, and
street-view images synthesized using this data show consistent building contours but lack texture

1https://www.openstreetmap.org/

14

https://www.openstreetmap.org/


Preprint.

Figure 9: Qualitative comparison of different input types on the OmniCity Li et al. (2023c) dataset.
Using satellite image and building height as input achieves the best results in all cases.

and detail. Combining OSM and building height data for street view synthesis perform well in
terms of semantics and structure. However, there are still deficiencies in texture details, such as
building colors. Combining satellite imagery and building height data yields street-view images that
are optimal in both structure and texture, visually closest to real street views. Table 7 provide the
quantitative results obtained from different types of input data. Due to the rich texture information in
satellite images, our CrossViewDiff achieved SSIM Wang et al. (2004) and FID Heusel et al. (2017)
scores of 0.361 and 37.89, respectively, representing improvements of 4.6% and 17.6% compared to
the results synthesized using OSM and building height data as inputs.

Table 7: Quantitative comparison of different types of input data on the OmniCity dataset. Using
satellite image and building height as input data achieves optimal performance, with a significant
improvements compared with other input cases.

Input data SSIM (↑) SD (↑) PSNR (↑) FID (↓) KID (↓)

Text 0.298 14.54 11.131 82.37 0.069
OSM 0.294 14.67 10.741 43.26 0.034
Building height 0.327 14.65 11.422 47.94 0.044
OSM + Building height 0.345 14.79 11.748 45.98 0.039
Satellite + Building height 0.361 15.21 11.512 37.89 0.027

Figure 10: Visualization results of street-view synthesis from satellite images taken at different
times. The areas highlighted in red indicate regions where terrain changes have occurred over time.
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Next, we explored the results of synthesizing street-view images using satellite imagery data from
different years. As shown in Figure 10, significant changes in terrain features over time can also be
observed in our synthesized street-view images, such as the transformation of parking lots or vacant
lots into buildings within the areas highlighted in red. Given the relatively recent widespread adop-
tion of street-view imaging compared to the earlier availability of remote sensing satellite imagery,
our effective satellite-to-street-view synthesis method unveils historical scenes from earlier times,
offering practical application value.

4.6 LIMITATION ANALYSIS

Despite the above advantages, street-view images generated by CrossViewDiff still have several
limitations. Although we fused features rich in structural and textural information based on satellite
image, the gap between the two viewpoints is still large, and Stable Diffusion is more capable of
creating additional details that do not actually exist. Figure 11 provides some typical failure cases
obtained by CrossViewDiff. For satellite and street-view images that were not taken at the same
season, even though the synthetic street-view image is consistent with the satellite’s features, it may
not be consistent with the ground truth. Besides, in less constrained regions of the image such as the
sky, the synthesis result is somewhat different from GT and has a certain amount of color shifting,
resulting in the relatively low PSNR to some extent. Moreover, due to the presence of moving
objects such as pedestrians and vehicles in the scene, achieving consistency in cross-view synthesis
results remains challenging.

Figure 11: Typical failure cases of our method. The first row of images shows that as the satellite
and street-view images provided in the dataset were not taken at the same season, the synthetic
image may not be consistent with the ground truth even if it is consistent with the satellite’s features.
The second row shows a significant discrepancy in the sky areas of the synthesized street views, as
sky region information cannot be obtained from satellite images. Additionally, vehicles and other
moving objects pose significant challenges to cross-view synthesis.

5 CONCLUSION

In this work, we have proposed CrossViewDiff, a cross-view diffusion model to synthesize a street-
view panorama from a given satellite image. The core of our diffusion model is a cross-view control
guided denoising process that incorporates the structure and texture controls constructed by satel-
lite scene structure estimation and cross-view texture mapping via an enhanced cross-view attention
module. Qualitative and quantitative results show that our method generates street-view panoramas
with better consistency and perceptual quality as well as more realistic structures and textures com-
pared with the state-of-the-art. We believe that this paper motivates new ideas and inspirations for
large-scale city simulation and 3D scene reconstruction. In our future work, we will further explore
the fusion of more types of multimodal data including textual data, map data, 3D data, and multi-
temporal satellite imagery to enhance the quality and realism of the synthesized street-view images.
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We also plan to extend our method to more cities and improve our methods for more complex appli-
cation scenes such as urban planning, virtual tourism, and intelligent navigation.
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